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Background: Dynamical Systems

* System with evolution of state represented by differential equations
* Behavior described by chaotic attractor: path of system is state-space

* Chaotic: system in which a small difference in initial conditions grows
exponentially (e.g. weather and climate)

* Characterized by invariant properties
* e.g. Lyapunov time A__ 1 : characteristic e-folding time on which system is chaotic

e Forecasting of such systems has improved... why? 2 types of models

Strange (fractally structured)
attractor, often associated with
chaotic systems




Background: Physics-based models

* “Domain Knowledge”
* Better represent system at hand/chaos

e Examples:

e Reservoir computing (lift into higher dimension, making relationships more
linear)

* Neural ODEs
* Physics-informed NNs
* RNNs with domain-specific structural design

e Can we think of any examples within atmospheric science?



https://en.wikipedia.org/wiki/Reservoir_computing#:~:text=Reservoir%20computing%20is%20a%20framework,linear%20system%20called%20a%20reservoir.
https://en.wikipedia.org/wiki/Reservoir_computing#:~:text=Reservoir%20computing%20is%20a%20framework,linear%20system%20called%20a%20reservoir.

Background: Domain-agnostic models

* “Model Scale”
* Large, overparameterized not built with knowledge of field

* Examples:
 Transformers
 Hierarchical NNs

* Perform well with sufficient data
* Can we think of any examples in atmospheric science?



Methods

 Compared models across 135 dynamical systems
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Figure 1. A space of low-dimensional chaotic systems. (A) A dataset of 135 distinct low-dimensional chaotic systems,
colored by largest Lyapunov exponent (Amax). (B) A nonlinear embedding of the attractors. Each attractor is featurized using
747 invariant properties such as entropy, fractal dimension, et al., and then embedded in a two-dimensional vector space with
UMAP. Contours denote 50% confidence intervals in each system’s embedding across 500 random initial conditions and feature
subsets; points denote centroids for each system.



Methods

* 24 models tested on each system (full list in Appendix D)
* Physics-based
* Domain-agnostic
* Naive (e.g. regression/mean)

* Hyperparameters tuned for each model (different from previous
experiments)

* Terms:
* T,: lookback window (i.e. input size)
* t*: history length (i.e. training size)
e t: forecast horizon
* A\, L Lyapunov time



Results: Figure 2

e Discuss:

* Which models performed well?

* NBEATS, NHITS, LSTM, transformer are large
domain-agnostic

* ESN, nVAR, nODE are physics-based
* Compared to each other and to naive methods?

» Solid performance up to 14 Lyapunov times is
better than historical results

* What is forecast horizon scale?
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Figure 2. Statistical forecasting across an ensemble
of chaotic systems. (A) The average error of 24 forecast-
ing methods (e;x(t))r as a function of Lyapunov time, aver-
aged across 135 distinct chaotic systems. Colors denote high-
performing models with properties of particular interest. (B)
Distributions of the forecast errors when t = A L.. (C) The
predictions of the best-performing forecast model (red), rel-
ative to a held-out true trajectory from the Mackey-Glass
model (gray) at short and long forecasting horizons.



Results: Figure 3

e Discuss:

A. Larger models with good
performance required longer
training

Best correlationsat 1 A,

* Long enough for invariant
properties to matter, not too long

B.
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to be less predictable
* Invariant properties not tell-all
Physics-based models showed

quicker initial improvement
with limited training data

* Potential strength of physics-
based models
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Figure 3. Universal relationships among forecasting methods. (A) Error versus training time at fixed forecast
horizon t = AL for all models. Bar lengths denote standard deviations along principal axes, with angle indicating Spearman
correlation within each model group in order to detect Simpson’s paradox. The underlaid linear fit indicates the overall
correlation p = —0.31 + 0.04. (B) Median relative correlation of each forecasting method with its average prediction, across
different forecast horizons. (C) Median model errors at ¢ = Apax as the amount of history data increases. (D) Correlation of
forecasting error with Lyapunov exponent Amax as a function of forecasting horizon. All error bars correspond to 95% confidence
intervals, and colors match methods from previous figures.



Conclusions

* Large domain-agnhostic models better with extensive training data,
physical models better with limited training data

* No free lunch

 Where do atmospheric science problems fit?
* Lots of data: high frequency data in time and space, weather forecasting?
 Limited data: extremes, seasonal/yearly/global averages

* Do we agree with their conclusions?
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